Multiplex ARMS PCR to Detect 8 Common Mutations of ATP7B Gene in Patients With Wilson Disease
نویسندگان
چکیده
BACKGROUND Wilson disease is a rare disorder of copper metabolism due to mutation in ATP7B gene. Proper counseling of patients with Wilson disease, and their families necessitates finding mutation in ATP7B gene. Finding mutations in ATP7B gene with 21 exons, and more than 500 mutations is expensive and time-consuming. OBJECTIVES The aim of this study was to provide a simple multiplex amplification refractory mutation system PCR (M-ARMS-PCR) for screening eight common mutations in ATP7B gene. PATIENTS AND METHODS Two sets of ARMS mutant and normal specific primer pairs were designed for genotyping of p.R778L, p.R969Q, p.H1069Q, and p.3400delC mutations as Set 1 and p.W779G, c.3061-1G > A, p.I1102T, and p.N1270S mutations as Set 2. The Multiplex ARMS assay was then subsequently tested in 65 patients with Wilson disease with known and unknown ATP7B mutations. RESULTS Using these two sets, we identified H1069Q mutation in four patients, c.2335T > G mutation in three, c.3061-1G > A splice site mutation in five, c.3305T > C mutation in one, and c.3809A > G mutation in two patients. CONCLUSIONS The Multiplex ARMS assay used in this study can be an efficient, reliable, and cost effective method as a primary screen for patients with Wilson disease.
منابع مشابه
Molecular Genetics Diagnosis of Wilson Disease: the First Reported Case of ATP7BGene Mutation at Codon 778 in Southwest Iran
Wilson disease is a metabolic disorder with an autosomal recessive genetic pattern and occurs in 1-4 of every 100000 individuals. Inactivation of the ATP7B gene leads to accumulation of the toxic copper to liver and brain causing hepatic and neurological complication. Therefore, most patients suffer from chronic hepatic inflammation and central nervous system disorder. Nowadays, up to ...
متن کاملFamily screening for a novel ATP7B gene mutation, c.2335T>G, in the South of Iran
Background Wilson disease (WD) is a rare autosomal recessive disorder, which leads to copper metabolism, due to mutations in ATP7B gene. The gene responsible for WD consists of 21 exons that span a genomic region of about 80 kb and encodes a copper transporting P-type ATPase (ATP7B), a protein consisting of 1465 amino acids. Identifying mutation in ATP7B gene is important to find carrier i...
متن کاملNovel mutations in ATP7B gene of Wilson\'s disease in Iranian patients
Bacground: Wilson's disease is a rare autosomal recessive disorder characterized by toxic accumulation of copper in liver and brain. The disorder is caused by mutations in the ATP7B gene, encoding a copper transporting P-type ATPase. Characterization of the spectrum of mutations in this gene is important both for diagnosis and genetic counseling of the families. Materials and Methods: We enrol...
متن کاملPrevalence of ATP7B Gene Mutations in Iranian Patients With Wilson Disease
BACKGROUND Wilson disease (WD) is an autosomal recessive disorder. The WD gene, ATP7B, encodes a copper-transporting ATPase involved in the transport of copper into the plasma protein ceruloplasmin and in excretion of copper from the liver. ATP7B mutations cause copper to accumulate in the liver and brain. OBJECTIVES We examined the ATP7B mutation spectrum in Wilson disease patients in Iran. ...
متن کاملWilson Disease Mutations in the American Population: Identification of Five Novel Mutations in ATP7B
Wilson disease is an autosomal recessive disorder characterized by toxic accumulation of copper in a number of organs such as liver and brain, which results in significant disability or death if left untreated. Wilson disease is caused by mutations in ATP7B, a copper transporter. We analyzed 108 American Wilson disease patients, who are predominantly White, for mutations in ATP7B. Consistent wi...
متن کامل